publications

2023

  1. arXiv
    How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions
    Pacchiardi, Lorenzo, Chan, Alex J., Mindermann, Soren, Moscovitz, Ilan, Pan, Alexa Y., Gal, Yarin, Evans, Owain, and Brauner, Jan
    2023

2022

  1. arXiv
    Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
    Pacchiardi, Lorenzo, and Dutta, Ritabrata
    arXiv preprint arXiv:2205.15784 2022
  2. arXiv
    Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
    Pacchiardi, Lorenzo, Adewoyin, Rilwan, Dueben, Peter, and Dutta, Ritabrata
    arXiv preprint arXiv:2112.08217 2022
  3. JMLR
    Score Matched Neural Exponential Families for Likelihood-Free Inference
    Pacchiardi, Lorenzo, and Dutta, Ritabrata
    Journal of Machine Learning Research 2022

2021

  1. arXiv
    Generalized Bayesian Likelihood-Free Inference Using Scoring Rules Estimators
    Pacchiardi, Lorenzo, and Dutta, Ritabrata
    arXiv preprint arXiv:2104.03889 2021
  2. PLOS Comp. Biol.
    Using Mobility Data in the Design of Optimal Lockdown Strategies for the COVID-19 Pandemic
    Dutta, Ritabrata, Gomes, Susana, Kalise, Dante, and Pacchiardi, Lorenzo
    PLOS Computational Biology 2021
  3. JSS
    ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
    Dutta, Ritabrata, Schoengens, Marcel, Pacchiardi, Lorenzo, Ummadisingu, Avinash, Widmer, Nicole, Künzli, Pierre, Onnela, Jukka-Pekka, and Mira, Antonietta
    Journal of Statistical Software 2021

2020

  1. Sankhya B
    Distance-Learning for Approximate Bayesian Computation to Model a Volcanic Eruption
    Pacchiardi, Lorenzo, Künzli, Pierre, Schoengens, Marcel, Chopard, Bastien, and Dutta, Ritabrata
    Sankhya B 2020